Question Number	Acceptable Answers	Reject	Mark
1 (a)(i)	Conc. Nitric acid (1) Conc. Sulfuric acid (1)		2
	Allow correct formulae Ignore state symbols Sulfuric acid and nitric acid with no mention of concentrated scores (1)		

Question Number	Acceptable Answers	Reject	Mark
1 (a)(ii)	Pear shaped/round bottomed flask & heat source (1) Allow vertical arrow with or without the word heat Allow water bath as a heat source Liebig condenser, shown vertically (1) (Water) flow shown correctly into a jacket (1) Ignore thermometers unless stoppered Penalise (one for each): Stopper/sealed Gaps between flask and condenser Condenser inner tube extends into liquid in flask	Conical flask in diagram or label	3

Question Number	Acceptable Answers	Reject	Mark
1 (a)(iii)	Heat Speed up reaction / to overcome the activation energy / provide energy to break bonds / because activation energy for the reaction is high (1) Under reflux	Just to provide energy for the reaction to start	2
	Prevent escape of reactants / products Or As they may be flammable / harmful / volatile (1)	Just to increase the yield/make reaction go to completion	

Question Number	Acceptable Answers	Reject	Mark
1 (a)(iv)	$HOCH_2CH_2N(C_2H_5)_2$ Allow $OHCH_2CH_2N(C_2H_5)_2$		1
	Allow displayed or skeletal formulae		

Question Number	Acceptable Answers	Reject	Mark
1 (a)(v)	Reduction (1) Allow redox		2
	Tin / iron / zinc and (conc./dilute) hydrochloric acid (1) Accept correct names or formulae for both alternatives	Addition of NaOH unless clearly after the reduction Hydrogen gas and nickel (catalyst)	
	Ignore references to tin as a catalyst Ignore conditions	LiAIH ₄	
	Allow NaBH₄ in alkali (Pd catalyst)		

Question Number	Acceptable Answers	Reject	Mark
1 (b)(i)	Moles of 2-hydroxy benzoic acid = 9.4/138 (1) (= 0.0681)	100 x 7.77/9.40 = 82.7%	3
	So theoretical yield of aspirin = 0.0681 x 180 (1) = 12.26 g		
	% yield = $100 \times 7.77/12.26 = 63.4\%$ (1)		
	Or		
	Moles of 2-hydroxy benzoic acid = 9.4/138 (1) (= 0.0681)		
	Moles of aspirin = $7.77/180$ (1) (=0.0432) % yield = $100 \times 0.0432/0.0681 = 63.4/63\%$ (1)		
	Correct answer with no working 3 marks		
	Allow 1 max. if Mr values are transposed 108%		

Question Number	Acceptable Answers	Reject	Mark
1 *(b)(ii)	Dissolve/add to impure solid in min. volume / amount (1) of hot solvent / water (1) (Filter whilst hot) Allow to cool and filter off product / (re)crystallize and filter off product (1) Wash with cold / small amount of solvent / water (then dry) (1)	Just 'small/little amount of water' Named solvents other than water – penalise once	4

Question Number	Acceptable Answers	Reject	Mark
1 (b)(iii)	It reduces yield as some product remains in solution Allow stated and explained errors due to transfer e.g. left on filter paper	Just `transfer errors'	1

Question Number	Acceptable Answers	Reject	Mark
1 (c)(i)	CH ₃ COCI / (CH ₃ CO) ₂ O / ethanoyl chloride / ethanoic anhydride	Ethanoic acid	1
	If both name and formula are given then both must be correct		
	Allow acetyl chloride / acetic anhydride		
	Ignore any additional information		
	Allow displayed formulae		

Question Number	Acceptable Answers	Reject	Mark
1 (c)(ii)	(Lessen) risk of overdose / as paracetamol is toxic in larger doses/ as paracetamol is harmful in larger doses / reduce risk of taking medication over a longer time period than necessary / reduce risk of addiction		1

Question Number	Acceptable Answers	Reject	Mark
1 (c)(iii)	Net forces between paracetamol and water are less than the forces between water and water and / or paracetamol and paracetamol Allow benzene / ring doesn't interact with water Allow benzene ring is hydrophobic / non polar / only forms London forces / can't form hydrogen bonds	Just paracetamol / benzene ring is large / steric hindrance	1

Question Number	Acceptable Answers	Reject	Mark
2(a)(i)	C 60/12 = 5		1
	H 8/1 = 8		
	O 32/16 = 2 ALLOW		
	1 mol = 100 g		
	So 60 %C = C_5 , etc		

Question Number	Acceptable Answers		Reject	Mark
2(a)(ii)	C=C			4
	Test : add bromine water/Br ₂ (aq) (1)	Bromine/Br ₂ /Br ₂ (I)	
	Result : From yellow/brown/rebrown/orange to		clear for colourless	
	colourless/decolorises	(1)		
	OR			
	Test : add (acidified) potassium manganate((VII)) (solution) (1)	m	clear for colourless	
	Result : goes from pink/purple colourless/brown	to (1)		
	Test : add alkaline potassium manganate((VII)) (solution)			
	(1)		PCl ₅ /LiAlH ₄ as test	
	Result: goes green	(1)	NaOH/NaOH(aq)	
	соон:			
	Test :		colourless gas evolved	
	add NaHCO ₃ /Na ₂ CO ₃ /sodium carbpnate (solution)	(1)	evoived	
	Result:			
	Fizzes/bubbles/large volume neutralized	(1)		

ALLOW gas given off that turns limewater cloudy	5		
OR			
Test: with blue litmus	(1)		
Result: turns red	(1)		
The test can be with any other indicator, including universal indicator, with the correct initia and final colour		Add sodium colourless gas	
ALLOW pH meter	(1)	evolved	
pH 4-6	(1)		
OR			
Test : add ethanol with conc H ₂ SO ₄ (and warm)	(1)		
Result : gives pleasant/fruity of ester	smell (1)		
OR			
Test: add magnesium	(1)		
Result: fizzing/bubbles etc (of hydrogen)	(1)		
ALLOW gas given off that burn with a squeaky pop	S		

Question Number		Reject	Mark
2(b)(i)	Explanation of precedence/priority in terms of atomic numbers/masses of the attached groups OR	Both CH ₃ /methyl groups on the same side so Z (0/2)	2
	Highest-precedent/priority groups on each carbon are on opposite sides of the molecule (1)		
	E-/entgegen (1)		
	Mark independently		

Question Number	Acceptable Answers	Reject	Mark
2(b)(ii)	45 COOH ⁺ /CO ₂ H ⁺ (1)		2
	55 C ₄ H ₇ ⁺		
	OR		
	C ₃ OH ₃ ⁺ (1)		
	ALLOW Structural/displayed formulae of ions		
	Absence of + charge (1 max)		

Question Number	Acceptable Answers	Reject	Mark
2(b)(iii)	If they say yes (0)		1
	(No) (Cleavage of the C—COOH bond in) both compounds gives fragment(s) of the same mass OR Both give the same peak(s)/fragment(s)	'No' on its own	
	Both give CO ₂ H ⁺ / C ₄ H ₇ ⁺ fragments The mark can be scored by referring to just one of the		
	fragments/peaks/masses.		

Question Number	Acceptable Answers		Reject	Mark
*2(c)(i)	C is CH₃CHO (alone)	(2)	CH ₃ COH 1 max	6
	D is CH₃COCOOH (alone)	(2)		
	so tiglic acid must be B	(1)		
	tiglic acid mark can only be awarded if correct structures of either C or D are gi	ven.		
	Any one of the following			
	C must be an aldehyde	(1)		
	D is a ketone	(1)		
	Mention that CH₃CO present in either/bo compounds (because of formation of iodoform)	oth (1)		
	If one or both of the structures are incorany of the last 3 marks can be awarded max 5	rect		
	If C and D are fully correct, but the wron way round max 5	ng		

Question Number	Acceptable Answers	Reject	Mark
2(c)(ii)	Doesn't distinguish <i>E</i> - isomer from <i>Z</i> - isomer/geometric isomers (so no) OR Doesn't distinguish which sides of C=C functional groups are on	Just isomers/ stereoisomers/ enatiomers	1

Question Number	Acceptable Answers		Reject	Mark
2(d)(i)	CH₃CHO (1)	CH₃COH	4
	ACCEPT displayed or skeletal			
	Step 1			
	(heat)using acidified potassium dichromate/or H ⁺ /Cr ₂ O ₇ ²⁻ ((1)	Manganate VII/KMnO₄	
	distil (product as formed) condition on dichromate (nal [1)	Reflux	
	Step 2			
	HCN with KCN		HCN alone	
	OR			
	KCN with H ⁺ /acid			
	OR			
	KCN with (cold) NaOH(aq)/alkali (1)		
	ALLOW HCN with NaOH/alkali			
	For step 2 Ignore conditions e.g. a references to heat	any		

Question Number	Acceptable Answers	Reject	Mark
2(d)(ii)	Nucleophilic addition	Nutro philic addition	1
	Any recognisable spelling of 'philic' and addition, either order		
	Both words needed	Any other or additional words	

Question Number	Acceptable Answers	Reject	Mark
*2(d)(iii) QWC	Ethanal is planar (at the reaction site)	Intermediate is planar Square planar	2
	OR		
	Ethanal is a planar molecule (1)		
	Attack (from CN ⁻ to give the cyanohydrin) is (equally likely) from either side/above or below/from both sides (of the molecule) (so a racemic mixture is formed) (1)	Can attack carbocation from either side/any reference to SN1/SN2	
	Mark independently		

Question Number	Acceptable Answers	Reject	Mark
2(d)(iv)	Receptors for the compound in the body are often stereospecific so only one stereoisomer is pharmacologically active		1
	OR		
	Body recognises one (stereo)isomer		
	ALLOW		
	Only one (stereo)isomer is active		
	OR		
	One/the other isomer may be toxic/dangerous/harmful		
	OR		
	One isomer destroys body cells		
	OR		
	(Different) isomers have different biological/pharmacological/biochemical properties		

